Numerical Libraries:
RTE experience and perspective

PNNL workshop on September 19-20 2013 – Seattle
Patrick Panciatici (patrick.panciatici@rte-france.com)
Jean-Baptiste Heyberger (jean-baptiste.heyberger@rte-france.com)
Outline

- Motivation

- Experience
 - Time Domain Simulation
 - Optimization

- Perspective
Motivation: RTE (French TSO)

- **Our Missions:** operating, maintaining and developing the high and extra high voltage network.
 - Guaranteeing the reliability and proper operation of the power network at the minimal cost

- **RTE makes decisions,** using simulation and optimization software based on power system network modeling. We want:
 - To have a full knowledge on how the system is modeled
 - To understand how the associated mathematical equations are solved.
 - Utilization of “as generic as possible” solvers (*no dedicated tricks for power systems*)

 RTE is developing its own software since decades

- In the past, we developed everything including low level solvers:
 - sparse linear solver (*critical for most of our applications*)
Experience in Time Domain Simulation

- We are the developers of EUROSTAG jointly with Tractebel Engineering

- The PEGASE project, www.fp7-pegase.eu, (European Project). Review of all numerical methods to speed up the simulation of very large system (Pan European Grid): around 125 000 state variables.
 - for sparse linear solvers: we tested most of the existing numerical libraries:
 - Direct and Iterative Methods, Sequential or Parallel implementation
 - we found that KLU was the best method, it seems that our system is too small (only 125000 sv) to be solved efficiently with parallel sparse linear solvers
 - KLU is now used in the new release of EUROSTAG instead of our home made historical LU solver.

- In this project, we also develop a prototype using a generic DAE solver (SUNDIALS/IDA).
 - The results were very promising and we are starting a collaboration with LLNL.
 - Main advantage: accuracy (management of switching)
Experience in Optimization

- **Mixed Integer Linear programming (MILP): DCOPF / UC**
 - We still have a home made solver in our operational tools but we benchmark it against commercial solvers: CPLEX, FICO Xpress.
 - The home made solution gives good results
 - “Open source” solutions are not yet competitive and commercial solvers are quite expensive (deployment in a data center: 40 servers)

- **Non Linear Programming (NLP): ACOPF**
 - We still have a home made solver: Interior point Method in some of our applications,
 - But we are using more and more KNITRO (ZIENA):
 - For Mixed Integer Non Linear Programming for large systems: we found that a MPEC formulation with KNITRO is currently the only viable alternative
 - We investigated ideas around Automatic Differentiation:
 - we tested intensively ADOL-C in a collaboration with the developers (Jacobian Ok but Hessian too computational expensive)
 - AMPL reaches incredible performances in AD for the HESSIAN
 - We have now operational applications using AMPL
Perspective

- Promote «open» solutions:
 - Clear separation between modeler and solver
 - Standard interface between modeler and solver

- “Open” modeling
 - Possibility to see all the equations (*non hidden tricks modifying the problem to solve it*)
 - MODELICA, AMPL, ...

- as generic as possible solvers
 - not dedicated methods:
 - Utilization of the best solvers from applied mathematics

- Utilization of HPC: (typically 1000 servers with 16 cores)
 - barriers due to licensing policies of some commercial products