VOLTTRON™: A Software Framework for Connecting Buildings and Grid

BORA AKYOL, JEREME HAACK, BRANDON CARPENTER

Fundamental and Computational Sciences Directorate
Richland, WA
Technology Challenges

- Too much data, not enough information
 - Rapid deployment of networked, affordable sensors and controllers
- Scalable and fault tolerant control and diagnostics
- Secure and reliable communication
- Tight, vertical integration of single vendor products
- Lack of a cross-vendor “App Store” for Energy Applications for best of breed solutions
- Evolving standards landscape for transactive energy
- Lack of a reference platform for R&D use
Application Challenges

- Managing end-use loads
- Increasing end-use efficiencies
- Integrating variable distributed generation
 - Solar
 - Wind
- Integrating storage at multiple layers
- Integrating electric vehicles (EV)
- Enabling energy coordination and trading between buildings and trading between buildings and grid
Distributed Systems Call for Distributed Solutions

- What happens in a neighborhood where everyone owns an EV and everyone comes home at the same time on a hot day?
- What if appliances in your house could communicate with each other to coordinate energy usage and shift load to off-peak times?
 - Customer sees lower bills
 - Utilities get more predictable and even load
 - Quicker response to variable power generation
Technology Solution Attributes

- Open, flexible and modular software platform
 - Ease of application development
 - Interoperable across vendors and applications
 - Hides power and control system complexities from developers
 - Object oriented, modern software development environment
 - Language agnostic. Does not tie the applications to a specific language such as Java

- Broad device and control systems protocols support built-in
 - ModBUS, BACNet, and others
 - Multiple types of controllers and sensors
 - Low CPU, memory and storage footprint requirements
 - Supports non-Intel CPUs

- Secure
 - Security libraries and cryptography built-in
 - Manage applications to prevent resource exhaustion (CPU, memory, storage)
 - Robust against denial-of-service (e.g. does not crash when scanned via NMAP)
 - Supports modern application development environments
Approach: VOLTTRON™ Platform

- VOLTTRON is a software platform for next generation distributed control applications for integrating buildings and power grid
 - Proven through simulation, prototypes and field deployments
 - Flexible, Modular and Language-agnostic
 - Open-source, easy to extend, already being used by external collaborators
 - Maintain security and manage platform resources
 - Services for applications to find each other
VOLTTRON Success Stories

► Ideal platform for Department of Energy to use for transactive energy research and demonstrations
► Enables decentralized, distributed or hierarchical control applications with fast, and easy code development
► Demonstrated with real hardware
 ■ Hardware testbed
 ■ EV Charging coordination at PNNL SmartHomes
 ■ Transactional Network Program
► Downloaded and used by:
 ■ Virginia Tech
 ■ LBNL
 ■ ORNL
► Funded by PNNL’s Future Power Grid Initiative
Transactional Network Example

- Cornerstone of DOE funded demonstration
 - Coordinate behavior of roof top HVAC units
 - Deploy researcher control algorithms
 - Provide single point of contact for
 - Appliances
 - Data historian
 - External resources

- Components
 - Researcher control algorithms
 - Cloud applications and resources
 - HVAC and other appliances
Conclusion

- VOLTTRON is the ideal platform for supporting DOE missions in buildings and grid
- Hardware and software to support this platform already exists and is affordable
- Proven through field deployments

VOLTTRON Resources
- Wiki: https://github.com/VOLTTRON/volttron/wiki
- Email: volttron@pnnl.gov
- Developer mailing list
- Bi-monthly office hours